Figure S5. Quantification of arterial and venous diameters.

(A) The BA diameter was not changed upon lack of blood flow in comparison to uninjected controls (p>0.9999) and control MO (p>0.9999; Kruskal-Wallis test; n=7-9; 2 experimental repeats; 3dpf). (B) The PCeV diameter was reduced in comparison to uninjected controls (p=0.0175) but not control MO (p=0.1230; Kruskal-Wallis test). (C) aISV diameter was reduced in comparison to uninjected controls (p 0.0017) and control MO (p=0.0121; Kruskal-Wallis test). (D) vISV diameter was reduced in comparison to uninjected controls (p=0.0010) and control MO (p 0.0094; Kruskal-Wallis test). (E) The DA diameter was reduced in comparison to uninjected controls (p=0.0008) and control MO (p=0.0105; Kruskal-Wallis test). (F) The PCV diameter was reduced in comparison to uninjected controls (p=0.0159) but not control MO (p=0.0548; Kruskal-Wallis test). (G) Quantification of nuclei in 80μm ROIs in the BA and PCeV showed no significant difference between the two in any of the treatment groups (uninjected control p>0.9999; control MO p>0.9999; tntt2a p>0.9999) and numbers were not significantly changed in the absence of flow in comparison to uninjected (BA p>0.9999; PCeV p>0.9999) or control MO (BA p>0.9999; PCeV p>0.9999; uninjected control embryo n=7, control MO embryo n=8, tntt2a MO embryo n=7; Kruskal-Wallis test). (H) Analysis of ISV nuclei showed no significant difference in nuclei number between aISVs and vISVs in the three treatment groups (uninjected control p=0.5750; control MO p=0.1761; tntt2a p>0.9999) and no significant change in aISVs comparing uninjected controls to tntt2a MO (p=0.5756). However, vISV EC number was reduced in tntt2a MO in comparison to uninjected controls (p=0.0005).