The effect of absent blood flow on the zebrafish cerebral and trunk vasculature

Elisabeth Kugler * 1-4, Ryan Snodgrass 1,2, George Bowley 1,2, Karen Plant 1,2, Jovana Serbanovic-Canic 1,2, Noémie Hamilton 1,2, Paul C. Evans 1-3, Timothy Chico #1,2, and Paul Armitage #1,3

1 Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Beech Hill Road, Sheffield, S10 2RX United Kingdom.
2 The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN United Kingdom.
3 Insigneo Institute for in silico Medicine, The Pam Liversidge Building, Sheffield, S1 3J United Kingdom.
4 Institute of Ophthalmology, Faculty of Brain Sciences, University College London, 11-43 Bath St, London EC1V United Kingdom.

* Corresponding Author
Joint Senior Authors

Correspondence details:
Elisabeth Kugler, e.kugler@ucl.ac.uk

ORCID IDs
Elisabeth Kugler 0000-0003-2536-6140
Ryan Snodgrass
George Bowley
Karen Plant
Jovana Serbanovic-Canic 0000-0002-8835-1491
Noémie Hamilton 0000-0002-3299-9133
Paul C. Evans 0000-0001-7975-681X
Timothy Chico 0000-0002-7458-5481
Paul Armitage

Running title: Impact of blood flow on vascular topology
Keywords: in vivo, light sheet, quantification, vasculature, zebrafish;
Key points.

- We here use zebrafish as a model to quantitatively assess the impact of the lack of blood flow in development and compare its impact in two vascular beds, namely the cerebral to trunk vasculature.
- In both vascular beds, vascular growth and endothelial cell number are reduced by lack of blood flow, with increasing effect size from 2-5 days post fertilisation.
- Examination of vascular patterning shows that while in the absence of flow vasculogenesis and sprouting occur, anastomosis is delayed in the trunk and reduced in the head.
- Studying differential responses in vessel types, we found that vascular responses to absent blood flow are vascular-bed as well as vascular-identity specific.
- We found non-EC-specific cell death to be increased in both vascular beds, with a larger effect size in the brain, but that this cell death occurs without triggering recruitment of immune cells (macrophages or neutrophils) or tissue inflammation.

Abstract

The role of blood flow in vascular development is complex and context-dependent. In this study, we quantify the effect of the lack of blood flow on embryonic vascular development on two vascular beds, namely the cerebral and trunk vasculature in zebrafish. We perform this by analysing vascular topology, endothelial cell (EC) number, EC distribution, apoptosis, and inflammatory response in animals with normal blood flow or absent blood flow. We find that absent blood flow reduced vascular area and endothelial cell number significantly in both examined vascular beds, but the effect is more severe in the cerebral vasculature, and severity increases over time. Absent blood flow leads to an increase in non-EC-specific apoptosis without increasing tissue inflammation, as quantified by cerebral immune cell numbers and nitric oxide. Similarly, while stereotypic vascular patterning in the trunk is maintained, intra-cerebral vessels show altered patterning, which is likely to be due to vessels failing to initiate effective fusion and anastomosis rather than sprouting or path-seeking. In conclusion, blood flow is essential for cellular survival in both the trunk and cerebral vasculature,
but particularly intra-cerebral vessels are affected by the lack of blood flow, suggesting that responses to blood flow differ between these two vascular beds.

Introduction
Endothelial cells (ECs) perform multiple functions during normal physiology including wound healing, tissue regeneration, immune response, menstruation, and pregnancy (Demir et al., 2010; Jung and Kleinheinz, 2013; Singer and Clark, 1999). Cerebral EC dysfunction is associated with neurodegenerative diseases, arteriovenous malformations, aneurysms, and stroke (Feigin Valery L. et al., 2017; Lackland and Weber, 2015). Increasing evidence suggests ECs display different molecular and functional properties according to their anatomical site such as the cerebral or trunk vessels (Abbott et al., 2010; Chico and Kugler, 2021; Huntley et al., 2014; Kugler et al., 2019b; Vanlandewijck et al., 2018). This highlights the importance of studying the responses of multiple vascular in development and territories to experimental manipulations.

Zebrafish embryos are a frequently used model to study vascular development and disease (Bakkers, 2011; Chico et al., 2008; Gut et al., 2017). Fluorescent transgenic reporter lines allow cellular and sub-cellular visualization in vivo (Lawson and Weinstein, 2002). Advanced microscopy such as light sheet fluorescence microscopy (LSFM) acquires vascular information in great anatomical depth and over prolonged periods of time (Huisken et al., 2004), allowing data acquisition to be rich in information and detail. Zebrafish embryonic transparency allows non-invasive and in vivo studies of different vascular beds in the same animal.

After 24 hours post fertilization (hpf) the zebrafish basic body plan is established and cardiac contraction starts. Within this timeframe vasculogenesis forms the primary vessels (Isogai et al., 2001, 2003). Blood flow plays an important role in processes such as EC polarization, vascular lumenisation, pruning, and cardiac trabeculation (Campionho et al., 2020; Chen et al., 2012; Hove et al., 2003; Kochhan et al., 2013; Lee et al., 2016; Lenard et al., 2015; Ricard and Simons, 2015), and directly impacts vascular architecture (Hoefer et al., 2013). Zebrafish embryos can survive for 7 days post fertilisation (dpf) without blood flow via oxygen diffusion due to their small size (Gut et al., 2017; Stainier and Fishman, 1994). This makes them well suited to examine the role of blood flow on vasculogenesis and angiogenesis.
One approach to study the effect of absent blood flow in zebrafish is knockdown of cardiac troponin T2A (tnnt2a) using antisense morpholino oligonucleotides (MO). This prevents cardiac contraction, and thus blood flow (Sehnert and Stainier, 2002; Sehnert et al., 2002). Contrary to recent debates on MO phenocopying mutant phenotypes, the tnnt2a MO phenocopies the silent heart (sih) mutation (Sehnert et al., 2002), making it a widely used MO-based approach to study the lack of blood flow. Additionally, a control MO group accounts for injection-induced developmental delays (Stainier et al., 2017). Previous studies used this MO-based method to study the impact of blood flow on specific cerebral (Fortuna et al., 2015; Rödel Claudia Jasmin et al., 2019) and trunk vessels (Watson et al., 2013), showing that EC numbers are reduced in the trunk when blood flow is absent (Serbanovic-Canic et al., 2017; Watson et al., 2013). Even though these studies have provided invaluable insights into the role of blood flow, important questions remain unanswered about the role of blood flow in vascular development. These include whether absent blood flow has the same effects in different vascular beds, whether vessels of different identity respond differently, which steps of vasculature formation are altered, and whether effect sizes of absent blood flow differ in magnitude over time.

To examine these questions we here use LSFM 3D in vivo imaging of the cerebral and trunk vasculature of 2-5dpf zebrafish embryos with and without blood flow induced by tnnt2a knockdown. Our results show that even though the gross vascular responses to blood flow are comparable in different territories, some differences between anatomical sites exist, suggesting vascular territories exhibit differential sensitivity to absent blood flow.

Results

Cerebrovascular patterning is impaired by absent blood flow

We first examined whether cerebrovascular patterning is altered by lack of blood flow. Thus, we compared the cerebral vascular morphology of uninjected controls (Fig. 1A-D), control MO (Fig. 1E-H), and tnnt2a MO-injected embryos (Fig. 1I-L). When examining the global morphology, tnnt2a MO showed pericardial oedema, eye oedema, smaller eyes, and abnormal body curvature, which became more severe over time (Fig. S1). The tnnt2a morphants were smaller with overtly abnormal cerebral vasculature, with effects becoming more severe from 2-to-5dpf. Intra-cerebral vessels, especially in the midbrain, were most severely affected showing altered growth
patterns and an overall reduction of cerebral size was observed (Fig. 1L, dotted line). The primary head sinus (PHS), which extends laterally to the otic vesicle (OV), was enlarged, suggesting OV enlargement (Fig. 1L, filled arrowheads), while peripheral/perineural vessels such as the primordial hindbrain channel (PHBC) formed relatively normally (Fig. 1L, unfilled arrowhead; schematic of cerebral vessels from 2-to-5dpf Fig. S2). Our observations also confirms previous work in that vessels from the spinal cord and brain are still undergoing integration in the absence of blood flow (Kimura et al., 2015).

We next examined the distribution of EC in these animals (Fig. 2). This also suggested that peripheral vessels were less severely affected by absent blood flow, for example when comparing nuclei distribution in the middle cerebral vein (MCeV, Fig. 2, unfilled arrowhead) to central arteries (Fig. 2, black arrowhead). This was confirmed when examining Voronoi diagrams of EC nuclei distribution (Fig. 2M-O). Voronoi tessellation, overlapping nuclei images, aided the visualization of EC nuclei density/distribution by partitioning MIPs into sub-regions based on nuclei position. Thus the Voronoi diagram lines and their colour indicate the spatial relationship of nuclei to each other, e.g. larger tessellation and brighter colours show that a larger region is taken up by a nucleus. This showed EC distribution to be altered, particularly in the basilar artery (BA) or midbrain vessels.

This suggested that the effect of lack of blood flow becomes more severe over time and that central vessels are more impacted than peripheral vessels.

Vascular patterning in the trunk is preserved, but vascular morphology altered

We next examined vascular patterning in the trunk of the same animals to study whether the observed effects were conserved or different in these vascular beds (3A-L). Vessels formed by vasculogenesis were observed and in contrast to the cerebral vessels, trunk vessel patterning was largely unaltered in the absence of flow. However, the morphology of the caudal vein plexus (CVP) was less defined upon lack of blood flow (Fig. 3, white arrowhead) and intussusceptive pillars were lacking (Fig. 3A',E',I'). All our observations were consistent with previous studies that blood flow is required for plexus to caudal vein remodelling (Goetz et al., 2014), intussusception, and dorsal aorta (DA)-to-CVP segregation (Karthik et al., 2018), but not intersegmental vessel (ISV) migration (Isogai et al., 2003).
We next examined whether trunk EC numbers were changed. Examination of EC nuclei suggested EC numbers in the trunk were less severely impacted by lack of blood flow in comparison to cerebral vessels (Fig. 4), with EC distribution in animals without blood flow being similar in the CV but altered in ISVs (Fig. 4M-O). Together, this suggested that vascular growth patterns in the trunk were unaltered, but remodelling, including intussusception, were lacking and that this is accompanied by changes in EC numbers and distribution.

Lack of blood flow affects vascular area and EC number

To elucidate the effect of absent blood flow over time, we quantified cerebrovascular area (vascular voxels in 2D (MIPs)). This was significantly reduced in tnnt2a morphants from 2-to-5dpf (Fig. 5A; uninjected control 2dpf p<0.0001, 3dpf p<0.0001, 4dpf p<0.0001, 5dpf p<0.0001), with similar results in craniovascular branch points (Fig. S3A). Similarly, the number of cerebral EC nuclei was significantly reduced in tnnt2a morphants from 2-to-5dpf; while EC number almost doubled from 2-to-5dpf in controls, EC numbers were almost unaltered in fish without blood flow (Fig. 5B; uninjected control 2dpf p=0.0409, 3dpf p<0.0001, 4dpf p<0.0001, 5dpf p<0.0001). To examine the relationship between vascular area and EC nuclei number, vascular area-to-nuclei ratios were calculated (Fig. 5E), showing a decrease in uninjected controls (0.78 fold-change 2-to-5dpf) and control MO (0.87 fold-change 2-to-5dpf), while the ratio increased in tnnt2a MO (1.69 fold-change 2-to-5dpf). This showed that the number of nuclei-to-vasculature increased in controls, but decreased in animals without blood flow.

We performed the same analysis on the trunk, and found that vascular area was significantly reduced by absent blood flow at 2dpf (p=0.0074) and 3dpf (p=0.0195), but not 4dpf (p=0.1904) and 5dpf (p>0.9999) in tnnt2a MO (Fig. 5C). Additionally, the number of nuclei was not significantly lower at 2dpf (p=0.1514; Fig. 5D) but was significantly decreased at 3-to-5dpf (3dpf p=0.0018, 4dpf p=0.0013, 5dpf p<0.0001). Similar results were observed when assessing trunk vascular branch points as co-metric (Fig. S3B). Analysis of vascular-to-nuclei ratio showed that vascular area increased in all three groups (Fig. 5F; fold-change 2-to-5dpf: uninjected control 1.10, control MO 1.55, tnnt2a MO 2.51). Together, this suggested that cerebral vessels were more severely affected than trunk vessels by absence of blood flow and that lack of blood flow increases vascular-to-nuclei ratio in both the brain and trunk.
We next quantified the nuclei nearest neighbour distance (NND), finding it to be decreased in *tnnt2a* MO in both vascular beds (Fig. 5G,H), supporting the visual assessment of Voronoi diagrams and previous studies that suggest less net distance between ECs in the absence of flow (Goetz et al., 2014).

To assess how the observed reduced head size (Fig. S4A) related to vascular and nuclei density, vasculature-to-ROI and nuclei-to-ROI ratios were quantified. This showed that for all three groups, vascular coverage was maintained at about 30% from 2-5dpf (Fig. S4B), with ratios higher in *tnnt2a* MO at 5dpf in comparison to uninjected controls (p= 0.0074). Similarly, the nuclei-to-ROI ratios were maintained over time in all three groups (Fig. S4C), but with higher ratios in *tnnt2a* MO than in controls.

Together, this showed that even though *tnnt2a* MO have a reduced head size, vasculature-to-ROI and nuclei-to-ROI ratios are maintained or even larger than in controls.

Arterial and venous responses to lack of blood flow are vascular bed dependent

To study whether vessels of different identity were differentially or similarly impacted by lack of blood, we quantified the diameter of selected arteries and veins in the brain and trunk 3dpf. Quantification of cerebral BA diameter showed no difference between *tnnt2a* MO and controls (Fig. S5A; uninjected control p>0.9999, control MO p>0.9999), while the diameter of the posterior cerebral vein (PCeV) was reduced in animals without blood flow (Fig. S5B; uninjected control p=0.0175, control MO p=0.1230). BA diameter was reduced by 2.5% (uninjected control 16.41µm; *tnnt2a* MO 16.00µm), while the PCeV diameter was reduced by 36.46% (uninjected control 11.52µm; *tnnt2a* MO 7.32µm). Quantifying trunk ISV diameters, aISV diameter (Fig. S5C; uninjected control p=0.0017, control MO p=0.0121) and vISV diameter (Fig. S5D; uninjected control p=0.0010, control MO p=0.0094) were both reduced in *tnnt2a* MO. The mean diameter of aISVs was reduced by 40.4% (uninjected control 10.52µm; *tnnt2a* MO 6.27µm), while the mean diameter of vISVs was reduced by 46.64% (uninjected control 11µm; *tnnt2a* MO 5.87µm). The diameter of the DA (Fig. S5E; uninjected control p=0.0008, control MO p=0.0105) as well as the posterior cardinal vein (PCV) (Fig. S5F; uninjected control p=0.0159, control MO p=0.0548) were reduced in *tnnt2a* MO. The mean diameter of the DA was reduced by 40.76% (uninjected control 25.86µm; *tnnt2a* MO 15.32µm), while the mean diameter of the PCV was reduced by 29.1% (uninjected control 27.46µm; *tnnt2a* MO 19.47µm). This
suggested that vessel diameter is impacted by flow in vessel of venous and arterial identity in the trunk, while arterial vessel calibre of the BA is unaltered without flow. To further examine whether EC number was affected by vessel identity and/or vascular bed, EC nuclei per vessel were quantified. Analysis of nuclei of cerebral BA and PCEv in 80\(\mu\)m ROI showed no significant difference between those vessels in the examined treatment groups and no significant change upon lack of blood flow (Fig. S5G). Quantification of nuclei in trunk aISV and vISV showed no significant difference in EC numbers between vessels of different identity (Fig. S5H). Upon lack of blood flow arterial EC number was not reduced (p=0.5756), but venous EC number was significantly reduced (p=0.0005).

Together, this suggests that vascular responses are vascular-bed as well as vascular-identity specific.

Non-EC-specific cell death is increased by absent blood flow

To examine whether cell death contributed to the reduced EC numbers observed in \textit{tnnt2a} morphants, we quantified this using the transgenic Tg(secAnnexinV:mVenus)SH632 and the live dye Acridine Orange.

Visual inspection of the transgenic reporter line suggested an overall increase in cell death in \textit{tnnt2a} MO compared to controls in the head (Fig. 6A-C) but not trunk (Fig. 6D-F), with specific foci found in the brain (white arrowhead). To examine whether the observed increase in Annexin levels were vascular or non-vascular, we extracted non-vascular (Fig. 6A'-F') from vascular (Fig. 6A''-F'') signal by producing vascular masks in 3D, finding that the observed cell death was not EC-specific. Quantification of tissue signal-to-noise ratio (SNR; Fig. 6G,H) showed an increase in the head in \textit{tnnt2a} MO compared with uninjected controls (p=0.0012, Fig. 6G) but not trunk (p>0.9999, Fig. 6H). The number of Annexin foci was not increased in \textit{tnnt2a} MO (Fig. 6I; uninjected control p>0.9999).

To examine this further, the same experiments were conducted using the live dye Acridine orange, which showed similar results. However, cell death foci were clearly increased in fish without blood flow using the Acridine Orange assay (Fig. S6).

Together, this suggests that overall cell death is increased in \textit{tnnt2a} MO, not restricted to EC.

Inflammatory responses are not triggered by the absence of blood flow
We next examined whether immune cell numbers would be altered due to the observed cell death potentially triggering an inflammatory response, or local tissue ischemia due to lack of blood flow, equally triggering an inflammatory response (Eltzschig and Carmeliet, 2011). As the observed effects of lack of blood flow were more severe in the head vasculature, quantification was only performed in this vascular bed.

Quantification of the number of macrophages in controls and tnnt2a MO at 3dpf (Fig. 7A-C) showed no difference between groups (Fig. 7D; p=0.2356). Similarly, no difference was found in intracranial neutrophil numbers at 3dpf when comparing tnnt2a MO to controls (Fig. 7E-G; p=0.1708).

To further examine whether the observed cell death was associated with altered tissue inflammation in the absence of altered macrophage and neutrophil numbers, we visualised the inflammatory mediator nitric oxide (NO) using the live dye DAF-FM. Visual assessment showed no difference in DAF-FM levels in the head (Fig. 8A-C) and trunk (Fig. 8D-F). This was confirmed by SNR quantification in the head (Fig. 8G; p=0.7967) and trunk (Fig. 8H; p=0.9371) which showed no differences comparing samples with blood flow to samples without blood flow.

Interestingly, we observed that DAF-FM signal, previously described to be localized in the bulbus arteriosus after 2dpf (Grimes et al., 2006), was absent in fish without blood flow (Fig. S7), suggesting bulbus arteriosus NO expression is blood flow dependent. Together, our data suggested that the lack of blood flow does increase cell death but not tissue inflammation or immune cell recruitment at the investigated time-point.

Sprouting angiogenesis is altered but not halted by lack of blood flow

We next examined whether the observed changes in vascular patterning were due to changes in angiogenic sprouting. To examine this, we first examined trunk ISV sprouting and subsequent dorsal longitudinal anastomotic vessel (DLAV) formation, which are known to develop in a highly stereotypic anterior-to-posterior growth pattern. Comparison of timelapse data in controls and embryos without blood flow (Fig. S8A), showed that ISVs are competent to sprout in fish with blood flow, as previously suggested (Isogai et al., 2003). Also in agreement with previous studies, we did not observe inverse membrane blebbing to occur in the absence of flow (Gebala et al., 2016). However, DLAV anastomosis is delayed in fish without flow. Following the initial delay, ISVs sprout laterally to form the DLAV upon anastomosis. While vessels in
controls become subsequently perfused upon anastomosis, this is not the case in fish without blood flow.

We next examined cerebrovascular sprouting by examining CtA sprouting and numbers, due to their stereotypic sprouting pattern from the PHBC and anastomosis with the BA. This showed that CtA’s were able to sprout from the PHBC and merge with the BA (Fig. S8B) and when quantifying the number of sprouts this showed no significant difference in sprout number in fish without blood flow (Fig. S8C; uninjected controls p=0.4737). However, quantification of CtA’s merged to the BA, were significantly reduced in the absence of blood flow (Fig. S8D; uninjected controls p=0.0005).

Importantly, for all examined vessels stereotypic patterning was observed in the absence of flow, suggesting that path-finding is dependent on factors other than blood flow.

Discussion

In this study, we present the first assessment of the impact of blood flow on zebrafish embryonic vascular development from 2-to-5dpf, and present the first comparison of the impact of flow in two vascular beds, namely the head and trunk. We show that though the overall response to lack of blood flow is similar in both vascular beds, the head vasculature is more severely impacted than trunk vasculature, with intra-cerebral vessels particularly being affected. Additionally, the effect of absent blood flow increases over time. Our data show that lack of blood flow significantly increases cell death without significant cell death in ECs, without evidence of significant increase of tissue inflammation, as quantified by cerebral immune cell numbers and nitric oxide (Table 1).

Our work complements previous work (Serbanovic-Canic et al., 2017) which found blood flow cessation to induce EC apoptosis in zebrafish embryos at 30hpf, while our assessment of cerebral macrophage numbers extends the examinations of Xu et al. who limited their studies to macrophage of the tectum (Xu et al., 2016). Our finding that NO is lacking in the bulbus arteriosus at 3dpf in fish without blood flow is the first functional evidence of bulbus arteriosus NO to be blood flow dependent (Grimes et al., 2006).

Our data showed that even in the complete absence of flow, stereotypic vascular patterning is preserved in the trunk and peripheral cerebral vessels. Our findings show that sprouting angiogenesis occurs in both vascular beds in the absence of flow but
that anastomosis is delayed in the trunk and reduced in the head. This shows that in both, the trunk and head vasculature, vascular sprouting and path-seeking can occur in the absence of flow, and is therefore not solely dependent on pressure-gradients but likely to be induced by molecular or biochemical cues. However, successful fusion and anastomosis are blood flow dependent in both examined vascular beds. In agreement with previous work, we find that vascular plexus remodelling (Goetz et al., 2014; Karthik et al., 2018) and vascular lumenization are blood flow dependent (Gebala et al., 2016). While previous studies suggest that pruning is directly driven by blood flow (Chen et al., 2012), it was never shown that this is the case for vessels which have never experienced blood flow. Our data show that early vascular networks are established. We suggest that, particularly in the head, multiple mechanisms contribute to the altered vascularization (a) lacking vascular self-fusion and remodelling in the absence of flow could be the mechanism for the observed phenotype, as suggested for the subintestinal vein (Lenard et al., 2015); (b) reduced vascular stabilization (Bussmann et al., 2011; Packham et al., 2009); (c) potentially changed EC polarity and maintenance needs to be examined (Campinho et al., 2020). Critically, our work shows that vessel identity affects cell response to flow and that this is furthermore impacted by the vascular bed. Thus, we suggest that even though genetic factors establish vascular identity prior to blood flow (Geudens et al., 2019; Weijts et al., 2018), that fine-tuning of vascular response is likely to be caused by extrinsic vascular-bed-specific signalling molecules or biochemical cues (Chico and Kugler, 2021).

Our data show that EC nuclei net distance is reduced in the absence of flow by examination of NND and Voronoi tessellation. Our study suggests that this might be in part due to a reduced vascular area (i.e. vasculature and nuclei numbers are reduced; vascular-to-nuclei ratios are unaltered in early development but changed with age) rather than significantly altered cell movements as nuclei are observed in all formed vessels. However, it has been previously shown that ECs migrate against flow, thus the lack of blood flow might also alter EC net distance via migration changes (Franco et al., 2016). Our studies show that cerebral EC cell numbers double from 2-to-5dpf in controls, but remain stationary in fish without blood flow. Even though we observe cell death, there is a high likelihood that decreased proliferation due to the lack of blood flow is a contributing factor (Bazmara et al., 2015).
Once established blood vessels are established, also their EC properties and functions rely on blood flow, as it was previously shown regarding maintenance (Bussmann et al., 2011; Chico and Kugler, 2021; Neto et al., 2018; Packham et al., 2009), polarity (Franco et al., 2016; Kwon et al., 2016), and kugeln (Kugler et al., 2019b).

The finding that central cerebral vessels show severely altered growth patterns, while peripheral vessels are less impacted, suggests that the response to blood flow is different in different vascular territories; whether this is due to a difference in vessel formation (e.g. peripheral vessels are formed from angiogenesis derived clusters, while central vessels are formed by angiogenesis from primary vessels) (Proulx et al., 2010; Siekmann et al., 2009) or identity (e.g. perineural, extra-cerebral, vs. intra-cerebral) (Vanhollebeke et al., 2015) requires future investigation.

The mechanisms of the observed effects in response to absent blood flow still require future investigation. This could include examining the expression of different mechanoreceptors and EC properties to complement previous findings about the importance and impact of blood flow (Feng Shuang et al., 2017; Mahmoud et al., 2017; Novodvorsky and Chico, 2014; Serbanovic-Canic et al., 2019; Souilhol et al., 2020; Watson et al., 2013). Similarly, molecular pathways and their context-dependent interpretation (such as VEGF, BMPs, Wnt (Benz et al., 2019; Liang et al., 2001; Vanhollebeke et al., 2015; Wiley and Jin, 2011)) might play a role in encountered differences in the head and trunk vasculature.

Together, our findings emphasize the important role of blood flow in vascular patterning and development and highlights different responses in different vascular territories to mechanical stimuli.

Acknowledgments: We are grateful to Heba Ismail for feedback, Deepak Ailani for sharing chemicals, and Fiona Wright for technical support, as well as the Bateson Centre Zebrafish Facility Staff for support and advice. The authors thank all funders, including the University of Sheffield Department of Infection, Immunity and Cardiovascular Disease, Insigneo Institute for in silico Medicine, Medical Research Council, NC3Rs, and the British Heart Foundation.

We thank the reviewers for their in-depth invaluable feedback to improve the manuscript.
Material and Methods

Zebrafish Husbandry. Experiments were performed according to the rules and guidelines of institutional and UK Home Office regulations under the Home Office Project Licence 70/8588 held by TC.

Maintenance of adult zebrafish was performed as described in standard husbandry protocols (Aleström et al., 2019; Westerfield, 1993). Embryos, obtained from controlled mating, were kept in E3 (5mM NaCl, 0.17mM KCl, 0.33mM CaCl₂, 0.33mM MgSO₄) medium buffer with methylene blue and staged according to Kimmel et al. (Kimmel et al., 1995). The following transgenic reporter lines were used: Tg(kdr:HRAS-mCherry)s916 (Chi et al., 2008) visualizes EC membrane, Tg(fli1a:eGFP)y1 (Lawson and Weinstein, 2002) visualizes EC cytosol, Tg(flk1:nls-eGFP)zfl09 (Blum et al., 2008) visualizes EC nuclei, Tg(mpx:GFP)i114 (Renshaw et al., 2006) visualizes neutrophils, and Tg(fms:GAL4.VP16)i186, Tg(UAS-E1b:nfsB.mCherry)i149 (Gray et al., 2011) visualizes macrophages. To assess cell death in vivo, we created the stable transgenic Tg(secAnnexinV:mVenus)SH632 in pDestCryaa:RFP, similar to (Morsch et al., 2015) and the plasmid cloning of (Hamilton et al., 2020).

Morpholino injection. Development of functional heart contraction was inhibited via injection of tntt2a ATG morpholino (1.56 ng final concentration), as described in (Sehnert and Stainier, 2002; Sehnert et al., 2002) (sequence 5’-CATGTTTGCTCTGATCTGACACGCA-3’). Control morpholino injections (5’-CCTCTTACCTCAGTTATTTATA-3’; no target sequence and little/no biological activity; Genetools, LLC) were performed with the above final concentration to study off-target effects of injections. Injections were conducted at one-cell-stage using phenol red as injection tracer.

Chemical and histological stains. In vivo visualization of cell death was performed using 2 µg/mL solution of Acridine Orange (Sigma) in 1X E3 for 2h in 3dpf embryos, followed by 3 washes in E3 before image acquisition (Verduzco and Amatruda, 2011). In vivo visualization of inflammation via nitric oxide (NO) (Zhang et al., 2019) was performed using 2.5µM DAF-FM-DA (Molecular Probes; D23844) (Kojima et al., 1998) for 6h in 3dpf embryos. DMSO control was performed at the same concentration and duration.
Image Acquisition Settings and Properties. Anaesthetized embryos were embedded in 2% LMP-agarose with 0.01% Tricaine in E3 (MS-222, Sigma). Data acquisition of the cranial and trunk vasculature was performed using a Zeiss Z.1 light sheet microscope, Plan-Apochromat 20x/1.0 Corr nd=1.38 objective, dual-side illumination with online fusion, activated Pivot Scan, image acquisition chamber incubation at 28°C, and a scientific complementary metal-oxide semiconductor (sCMOS) detection unit. The properties of acquired data were as follows: 16bit image depth, 1920 x 1920 x 400-600 voxel (x,y,z; approximate voxel size of 0.33 x 0.33 x 0.5 µm, respectively). Multicolour images in double-transgenic embryos were acquired in sequential mode.

Image Analysis.

As *tnnt2a* can develop considerable oedema, we ensured comparability between samples by standardized image acquisition from the dorsal view, including the most dorsal vessel the dorsal longitudinal vein (DLV) to the more ventral basilar artery (BA; [Fig. S3A](#)). For image analysis ROI selection was performed as previously described ([Fig. S9B](#)) (Kugler et al., 2019a).

Automatic Nuclei detection. 6-by-6 neighbourhood median filter (Lim, 1990) to remove salt-and-pepper noise (Gonzalez and Woods, 2018)(Gonzalez and Woods, 2018) and background removal with the rolling ball algorithm with size 200 (Sernberg, 1983), 2D maximum intensity projection, and detection of local noise maxima using Fiji Software (Burger and Burge, 2008; Schindelin et al., 2012). Voronoi diagram was established following Otsu thresholding (Otsu, 1979). Nuclei Nearest Neighbour Distance (NND) was quantified in MIPs following pre-processing as above and Otsu thresholding, using the Fiji NND plugin (https://icme.hpc.msstate.edu/mediawiki/index.php/Nearest_Neighbor_Distances_Calculation_with_ImageJ.html).

Signal intensities.

Signal intensity measurement of Acridine Orange and DAF-FM were conducted by creating 3D vascular masks following Sato filter for vascular enhancement and Otsu thresholding segmentation as previously described (Kugler et al., 2018, 2019a, 2020). Signal mean was quantified in ROIs in 2D MIPs. Signal-to-noise (SNR) ratio was
quantified as mean signal in ROI divided by the mean signal of the background (ROI placed outside the fish with a size of 10μm x10μm). Acridine orange foci were detected in ROI following 2D Median filtering using detection of maxima with an intensity over 10.

Manual analysis. All analysis was performed using Fiji (Schindelin et al., 2012). Diameter of basilar artery (BA) was measured approximately 30μm before bifurcating into posterior (caudal) communicating segments (PCS). Posterior cerebral vein (PCEV) was measured approximately 20μm before turning dorsally.

Posterior cardinal vein (PCV) and dorsal aorta (DA) diameters were measured above the cloaca, with three measurement points each in the same animal.

Intersegmental vessel (ISV) lengths of arterial (aISVs) and venous (vISVs) were measured above the cloaca, with three measurement points of the same vessels each in the same animal.

Vessel-specific nuclei measurements were conducted manually. Firstly, nuclei were counted in aISVs and vISVs closest to the cloaca. Secondly, nuclei in the PCEV and BA were measured in a 80μm long ROI positioned from the posterior end of the PCEV. CtA sprouting and connectivity to BA was measured manually from the left PHBC.

Immune cells. Intracranial macrophages and neutrophils were quantified manually in 3D after ROI selection of the dorsal cerebral vasculature.

Statistics and Data Representation. Gaussian distribution conformation was evaluated using the D’Agostino-Pearson omnibus test [21]. Statistical analysis was performed using One-way ANOVA or paired Students t-test in GraphPad Prism Version 7 (GraphPad Software, La Jolla California USA). Statistical significance was represented as: p<0.05 *, p<0.01 **, p<0.001 ***, p<0.0001 ****. Graphs show mean values ± standard deviation unless otherwise indicated. Image representation and visualization was done with Inkscape Version 0.48 (https://www.inkscape.org). Images were visualized as maximum intensity projections (MIPs). 3D rendering was performed using Arivis software (arivis AG, Munich, Germany).
Declarations

Timothy Chico is an Editorial Board Member of Vascular Biology. Timothy Chico was not involved in the review or editorial process for this paper, on which he is listed as an author.

Author Contribution. Funding obtained by EK, PA, TC, JS-C, NH, and PCE; Data Acquisition, EK, RS, GB, and KP; Investigation, Validation, and Data Curation, EK; Formal Visualization and Analysis, EK; Resources, PA, TC, JS-C, NH, and PCE; Project Administration, EK and PA; Writing – Original Draft, EK; Writing – Review and Editing, all authors.

Funding: This work was supported by a University of Sheffield, Department of Infection, Immunity and Cardiovascular Disease, Imaging and Modelling Node Studentship and an Insigneo Institute for in silico Medicine Bridging fund awarded to EK. RS was funded by the Medical Research Council Discovery Medicine North Doctoral Training Partnership. GB was funded by NC3Rs and the British Heart Foundation. JS-C was funded by the British Heart Foundation FS/18/2/33221. NH is funded by Association Européenne contre les Leucodystrophies, Grant/Award Number: ELA 2016-012F4. PCE was funded by NC3Rs and the British Heart Foundation RG/19/10/34506. The Zeiss Z1 light-sheet microscope was funded via British Heart Foundation Infrastructure Award IG/15/1/31328 awarded to TC.

Availability of data and material. Data are available upon request.

Code availability. Code is available upon request.

Conflict of interest statement. The authors declare that they have no conflict of interest.

Ethics approval. Animal experiments were performed according to the rules and guidelines of institutional and UK Home Office regulations under the Home Office Project Licence 70/8588 held by TC.

Consent for publication. Not applicable.
References

Figure 1. The effect of *tnnt2a* morpholino knockdown on cerebral vessel development.

(A-D) Cerebral vasculature from 2-to-5dpf in *Tg(kdrl:HRAS-mCherry)*^s916^ uninjected animals. (E-H) Cerebral vasculature in control MO-injected animals. (I-L) Cerebral
vasculature in \textit{tnnt2a} MO injected animals (n=7-10; 2 experimental repeats). The lack of blood flow in \textit{tnnt2a} morphants perturbs vascular development and worsens over time. Comparison between treatment groups shows that the midbrain vasculature is severely affected in \textit{tnnt2a} MO (dotted lines) and the PCV surrounding the OV is enlarged (filled arrowhead), while the PHBC appears normal (unfilled arrowhead; d – dorsal, v – ventral; representative images colour-coded by depth).
Figure 2. Lack of blood flow impacts cerebral EC number.

(A-D) Cerebral EC nuclei from 2-to-5dpf in Tg(flk1:nls-eGFP)zf109 uninjected control.

(E-H) Cerebral EC nuclei in control MO. (I-L) Cerebral EC nuclei in tntt2a MO (n=7-10; 2 experimental repeats). Comparison of cerebral EC nuclei shows reduced cell numbers in tntt2a MO with CtAs (filled arrowhead) being particularly affected (d – dorsal, v – ventral; representative images colour-coded by depth). (M-O) Voronoi (image partitioning based on nuclei position) diagrams of cerebral EC nuclei suggests nuclei numbers to be maintained in peripheral vessels such as the PHBC (white arrowheads), while EC density is reduced in the midbrain (grey arrowhead) and BA (unfilled arrowhead).
Figure 3. The effect of absent blood flow on trunk vessel development.

(A-D) Trunk vasculature from 2-to-5dpf in Tg(kdrl:HRAS-mCherry)s916 uninjected control. (E-H) Trunk vasculature in control MO (n=7-10; 2 experimental repeats). (I-L) Trunk vasculature in \textit{tnnt2a} MO. Topology of the trunk vasculature is established in the absence of flow, but morphology of the CV is severely altered (black arrowheads)
and intussusceptions are lacking (green arrowhead; d – dorsal, v – ventral; representative images colour-coded by depth).
Figure 4. Lack of blood flow impacts trunk EC number.

(A-D) Trunk EC nuclei from 2-to-5dpf in Tg(flk1:nls-eGFP)zf10g uninjected control. (E-H) Trunk EC nuclei in control MO. (I-L) Trunk EC nuclei in tnt2a MO (n=7-10; 2 experimental repeats). Visual comparison of trunk EC nuclei suggests comparable numbers between treatment groups (d – dorsal, v – ventral; representative images colour-coded by depth). (M-O) Voronoi analysis of trunk EC nuclei shows EC distribution is maintained in the CV (black arrowhead), a decrease is observed in ISVs (red arrowhead), and significant changes are observed more anteriorly (unfilled arrowhead).
Figure 5. Quantification of vasculature and nuclei.

(A) The cerebral vasculature is reduced in *tnnt2a* MO from 2-5dpf (n=7-10; 2 experimental repeats). (B) The number of cerebral EC nuclei is reduced in *tnnt2a* MO.
from 2-5dpf. (C) The trunk vasculature is reduced in *tnnt2a* MO at 2-3dpf, but not 4-5dpf (n=7-10; 2 experimental repeats). (D) The number of trunk EC nuclei is not altered in *tnnt2a* MO at 2dpf, but significantly reduced from 3-5dpf. (E) The ratio of cerebral vasculature-to-nuclei remains consistent in uninjected controls (green) and control MO (magenta), but increases over time in *tnnt2a* MO (blue). (F) The ratio of trunk vasculature-to-nuclei remains consistent in uninjected controls (green) and control MO (magenta), but increases over time in *tnnt2a* MO (blue). (G) Quantification of cerebral nuclei nearest neighbour distance (NND) showed nuclei distance to be decreased in *tnnt2a* MO in comparison to uninjected controls (p<0.0001) and control MO (p<0.0001; Kruskal-Wallis test). (H) Quantification of trunk nuclei NND showed nuclei distance to be decreased in *tnnt2a* MO in comparison to uninjected controls (p<0.0001) and control MO (p<0.0001; Kruskal-Wallis test).
Figure 6. Cell death is increased by absent blood flow.
(A-C) Cell death, visualized in the transgenic reporter line \[Tg(secAnnexinV:mVenus)_{SH632} \] (n=13-15; 3 experimental repeats; 3dpf). (D-F) Annexin levels in the trunk vasculature appeared visually similar between groups. (G) Quantification of cerebral Annexin SNR showed an increase in \textit{tnnt2a} MO in comparison to uninjected controls (p=0.0012) but not control MO (p=0.072; Kruskal-Wallis test). (H) Quantification of trunk Annexin SNR showed no increase in \textit{tnnt2a} MO in comparison to uninjected controls (p>0.9999) or control MO (p>0.9999; Kruskal-Wallis test). (I) Quantification of cerebral Annexin foci (white arrowheads) showed no increase in \textit{tnnt2a} MO in comparison to uninjected controls (p>0.9999) and control MO (p=0.4542; Kruskal-Wallis test).
Figure 7. Lack of blood flow does not impact the number of cerebral innate immune cells.

(A) Identification of immune cells was performed in 3D, allowing to discern non-specific signal (unfilled arrowhead) from immune cells (filled arrowhead). (B-C) Macrophages (magenta) were quantified examining the transgenic Tg(fli1a:eGFP)y1, Tg(fms:GAL4.VP16)i186, Tg(UAS-E1b:nfsb.mCherry)i149. (D) Number of macrophages was not changed upon blood flow loss (p=0.2356; n=12; 3dpf; Mann-Whitney U test). (E-F) Neutrophils (green) were examined in the transgenic reporter line Tg(mpx:GFP)i114, Tg(fms:GAL4.VP16)i186, Tg(UAS-E1b:nfsb.mCherry)i149. (G) Number of neutrophils was not changed upon blood flow loss (p=0.1708; n=12; 2 experimental repeats; 3dpf; Mann-Whitney U test).
Figure 8. Inflammation is not increased by absent blood flow.

(A-C) Examining nitric oxide (NO; visualized by DAF-FM) as an inflammatory marker, showed similar levels of NO in the head of uninjected controls, control MO, and *tnnt2a* MO (uninjected control n=11, control MO n=12, *tnnt2a* MO n=11; 3 experimental repeats; 3dpf). **(D-F)** DAF-FM levels in the trunk vasculature appeared visually similar between groups. **(G)** Quantification of cerebral DAF-FM SNR showed no difference between *tnnt2a* MO and uninjected controls (p>0.9999) or control MO (p>0.9999; Kruskal-Wallis test). **(H)** Quantification of trunk DAF-FM SNR showed no difference between *tnnt2a* MO and uninjected controls (p=0.1391) or control MO (p=0.1216; Kruskal-Wallis test).
Table 1. Overview of vascular properties altered upon lack of blood flow.

<table>
<thead>
<tr>
<th></th>
<th>Without blood flow</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>head</td>
</tr>
<tr>
<td>vasculogenesis</td>
<td>yes</td>
</tr>
<tr>
<td>angiogenic sprouts</td>
<td>yes</td>
</tr>
<tr>
<td>anastomosis</td>
<td>reduced</td>
</tr>
<tr>
<td>inverse membrane blebbing</td>
<td>n.a.</td>
</tr>
<tr>
<td>kugeln</td>
<td>no</td>
</tr>
<tr>
<td>cell death</td>
<td>increased</td>
</tr>
<tr>
<td>macrophages & neutrophils</td>
<td>no</td>
</tr>
<tr>
<td>DAF-FM</td>
<td>no</td>
</tr>
<tr>
<td>vascular area</td>
<td>reduced</td>
</tr>
<tr>
<td>EC number</td>
<td>reduced</td>
</tr>
<tr>
<td>vasculature:nuclei ratio</td>
<td>increased</td>
</tr>
<tr>
<td>NND</td>
<td>reduced</td>
</tr>
<tr>
<td>BP</td>
<td>reduced</td>
</tr>
<tr>
<td>artery diameter</td>
<td>no</td>
</tr>
<tr>
<td>vein diameter</td>
<td>reduced</td>
</tr>
<tr>
<td>artery nuclei</td>
<td>no</td>
</tr>
<tr>
<td>vein nuclei</td>
<td>no</td>
</tr>
</tbody>
</table>