Browse

You are looking at 1 - 10 of 25 items

Open access

Aurélie Hautefort, Anna Pfenniger and Brenda R Kwak

Gap junctions are essential for intercellular crosstalk in blood and lymphatic vasculature. These clusters of intercellular channels ensure direct communication among endothelial cells and between endothelial and smooth muscle cells, and the synchronization of their behavior along the vascular tree. Gap junction channels are formed by connexins; six connexins form a connexon or hemichannel and the docking of two connexons result in a full gap junction channel allowing for the exchange of ions and small metabolites between neighboring cells. Recent evidence indicates that the intracellular domains of connexins may also function as an interaction platform (interactome) for other proteins, thereby regulating their function. Interestingly, fragments of Cx proteins generated by alternative internal translation were recently described, although their functions in the vascular wall remain to be uncovered. Variations in connexin expression are observed along different types of blood and lymphatic vessels; the most commonly found endothelial connexins are Cx37, Cx40, Cx43 and Cx47. Physiological studies on connexin-knockout mice demonstrated the essential roles of these channel-forming proteins in the coordination of vasomotor activity, endothelial permeability and inflammation, angiogenesis and in the maintenance of fluid balance in the body.

Open access

Eleonora Zucchelli, Qasim Anjum Majid and Gabor Foldes

Angiogenesis and vasculogenesis are complex processes by which new blood vessels are formed and expanded. They play a pivotal role in physiological development and growth, tissue and organ repair, but also in a range of pathological conditions, from tumour formation to chronic inflammation, and atherosclerosis. Understanding the multistep cell-differentiation programmes and identifying the key molecular players of physiological angiogenesis / vasculogenesis is critical to tackle pathological mechanisms. While many questions are yet to be answered, increasingly sophisticated in vitro, in vivo and ex vivo models of angiogenesis/vasculogenesis, together with cutting-edge imaging techniques, allowed for recent major advances in the field. This review aims to summarize the three-dimensional models available to study vascular network formation and to discuss advantages and limitations of the current systems.

Open access

Piotr Kobialka and Mariona Graupera

PI3Ks belong to a family of lipid kinases that comprises eight isoforms. They phosphorylate the 3’ position of the inositol ring present in phosphatidylinositol lipids and, in turn, activate a broad range of proteins. The PI3K pathway regulates primal cellular responses, including proliferation, migration, metabolism and vesicular traffic. These processes are fundamental for endothelial cell function during sprouting angiogenesis, the most common type of blood vessel formation. Research in animal models has revealed key functions of PI3K family members and downstream effectors in angiogenesis. In addition, perturbations in PI3K signalling have been associated with aberrant vascular growth including tumour angiogenesis and vascular malformations. Together this highlights that endothelial cells are uniquely sensitive to fluctuations in PI3K signalling. Here, we aim to update the current view on this important signalling cue in physiological and pathological blood vessel growth.

Open access

Amer Harky, Ka Siu Fan and Ka Hay Fan

Thoracic aortic aneurysms and aortic dissections (TAAD) are highly fatal emergencies within cardiothoracic surgery. With increasing age, thoracic aneurysms become more prevalent and pose an even greater threat when they develop into aortic dissections. Both diseases are multifactorial and are influenced by a multitude of physiological and biomechanical processes. Structural stability of aorta can be disrupted by genes, such as those for extracellular matrix and contractile protein, as well as telomere dysfunction, which leads to senescence of smooth muscle and endothelial cells. Biomechanical changes such as increased luminal pressure imposed by hypertension are also very prevalent and lead to structural instability. Furthermore, ageing is associated with a pro-inflammatory state that exacerbates degeneration of vessel wall, facilitating the development of both aortic aneurysms and aortic dissection. This literature review provides an overview of the aetiology and pathophysiology of both thoracic aneurysms and aortic dissections. With an improved understanding, new therapeutic targets may eventually be identified to facilitate treatment and prevention of these diseases.

Open access

Aurélie Hautefort, Anna Pfenniger and Brenda R Kwak

Gap junctions are essential for intercellular crosstalk in blood and lymphatic vasculature. These clusters of intercellular channels ensure direct communication among endothelial cells and between endothelial and smooth muscle cells, and the synchronization of their behavior along the vascular tree. Gap junction channels are formed by connexins; six connexins form a connexon or hemichannel and the docking of two connexons result in a full gap junction channel allowing for the exchange of ions and small metabolites between neighboring cells. Recent evidence indicates that the intracellular domains of connexins may also function as an interaction platform (interactome) for other proteins, thereby regulating their function. Interestingly, fragments of Cx proteins generated by alternative internal translation were recently described, although their functions in the vascular wall remain to be uncovered. Variations in connexin expression are observed along different types of blood and lymphatic vessels; the most commonly found endothelial connexins are Cx37, Cx40, Cx43 and Cx47. Physiological studies on connexin-knockout mice demonstrated the essential roles of these channel-forming proteins in the coordination of vasomotor activity, endothelial permeability and inflammation, angiogenesis and in the maintenance of fluid balance in the body.

Open access

T Scott Bowen and Stuart Egginton

While the important and varied roles that vascular cells play in both health and disease is well recognised, the focus on potential therapeutic targets continually shifts as new players emerge. Here, we outline how mitochondria may be viewed as more than simply energy-generating organelles, but instead as important sentinels of metabolic health and effectors of appropriate responses to physiological challenges.

Open access

Amer Harky, Ka Siu Fan and Ka Hay Fan

Thoracic aortic aneurysms and aortic dissections (TAAD) are highly fatal emergencies within cardiothoracic surgery. With increasing age, thoracic aneurysms become more prevalent and pose an even greater threat when they develop into aortic dissections. Both diseases are multifactorial and are influenced by a multitude of physiological and biomechanical processes. Structural stability of aorta can be disrupted by genes, such as those for extracellular matrix and contractile protein, as well as telomere dysfunction, which leads to senescence of smooth muscle and endothelial cells. Biomechanical changes such as increased luminal pressure imposed by hypertension are also very prevalent and lead to structural instability. Furthermore, ageing is associated with a pro-inflammatory state that exacerbates degeneration of vessel wall, facilitating the development of both aortic aneurysms and aortic dissection.

This literature review provides an overview of the aetiology and pathophysiology of both thoracic aneurysms and aortic dissections. With an improved understanding, new therapeutic targets may eventually be identified to facilitate treatment and prevention of these diseases.

Open access

Tomasz Jadczyk, Guido Caluori, Wojciech Wojakowski and Zdenek Starek

Nanotechnology and stem cells are one of the most promising strategies for clinical medicine applications. The article provides an up-to-date view on advances in the field of regenerative and targeted vascular therapies describing a molecular design (propulsion mechanism, composition, target identification) and applications of nanorobots. Stem cell paragraph presents current clinical application of various cell types involved in vascular biology including mesenchymal stem cells, very small embryonic-like stem cells, induced pluripotent stem cells, mononuclear stem cells, amniotic fluid-derived stem cells and endothelial progenitor cells. A possible bridging between the two fields is also envisioned, where bio-inspired, safe, long-lasting nanorobots can fully target the cellular specific cues and even drive vascular process in a timely manner.

Open access

James T Pearson, Mikiyasu Shirai, Vijayakumar Sukumaran, Cheng-Kun Du, Hirotsugu Tsuchimochi, Takashi Sonobe, Mark T Waddingham, Rajesh Katare and Daryl O Schwenke

Ghrelin is a small peptide with important roles in the regulation of appetite, gut motility, glucose homeostasis as well as cardiovascular protection. This review highlights the role that acyl ghrelin plays in maintaining normal endothelial function by maintaining the balance of vasodilator-vasoconstrictor factors, inhibiting inflammatory cytokine production and immune cell recruitment to sites of vascular injury and by promoting angiogenesis.

Open access

Eleonora Foglio, Laura Pellegrini, Antonia Germani, Matteo Antonio Russo and Federica Limana

Acute myocardial infarction (MI) and its consequences are the most common and lethal heart syndromes worldwide and represent a significant health problem. Following MI, apoptosis has been generally seen as the major contributor of the cardiomyocyte fate and of the resultant myocardial remodeling. However, in recent years, it has been discovered that, following MI, cardiomyocytes could activate autophagy in an attempt to protect themselves against ischemic stress and to preserve cardiac function. Although initially seen as two completely separate responses, recent works have highlighted the intertwined crosstalk between apoptosis and autophagy. Numerous researches have tried to unveil the mechanisms and the molecular players involved in this phenomenon and have identified in high-mobility group box 1 (HMGB1), a highly conserved non-histone nuclear protein with important roles in the heart, one of the major regulator. Thus, the aim of this mini review is to discuss how HMGB1 regulates these two responses in ischemic heart diseases. Indeed, a detailed understanding of the crosstalk between apoptosis and autophagy in these pathologies and how HMGB1 regulates them would be of tremendous help in developing novel therapeutic approaches aimed to promote cardiomyocyte survival and to diminish tissue injury following MI.